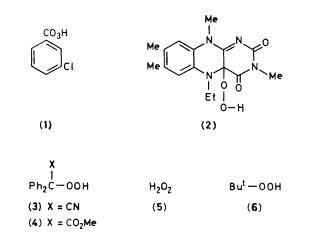
Leaving Group Tendencies and the Rates of Mono-oxygen Donation by Hydrogen Peroxide, Organic Hydroperoxides, and Peroxycarboxylic Acids


Thomas C. Bruice

Department of Chemistry, University of California at Santa Barbara, Santa Barbara, California 93106, U.S.A.

The log of the second-order rate constants for the sulphoxidation of thioxan, *N*-oxidation of *N*,*N*-dimethylbenzylamine, and oxidation of I^- to I_2 are linearly related to the pK_a of YOH when the mono-oxygen donors YOOH represent peroxycarboxylic acid, organic hydroperoxides, and hydrogen peroxide (the mechanism of mono-oxygenations by the biologically important 4a-hydroperoxyflavins find explanation through this correlation).

The transfer of an oxygen atom from hydroperoxides to organic substrates is of considerable interest to both organic and biological chemists.¹⁻³ The study³ of 4a-hydroperoxy-5-alkylflavins and other electron-deficient organic hydroperoxides^{2,4} has shown that organic hydroperoxides may possess considerable potential as mono-oxygen transfer agents in systems which do not require metal ions or other catalysts. The relationship of the mechanisms for hydroperoxide mono-oxygen and percarboxylic acid mono-oxygen transfers requires attention.

The oxygen donors *m*-chloroperbenzoic acid (1), 4a-hydroperoxy-5-ethyl-3-methyl-lumiflavin (2), diphenylhydroperoxyacetonitrile (3), methyl diphenylhydroperoxyacetate (4), hydrogen peroxide (5), and t-butyl hydroperoxide (6) have now been studied. Of these (1) is a peroxycarboxylic acid, (2) a close analogue of the 4a-hydroperoxyflavins generated at the active site of the flavin mono-oxygenase enzymes, and (3) and (4) (obtainable in high purity) have been found by Rebek² to be among the most useful alkyl hydroperoxides for the epoxidation of olefins. The reactions studied were the sulphoxidation of thioxan, the *N*-oxidation of *N*,*N*-dimethylbenzylamine, and

the oxidation of I⁻ to I₂. The reactions with thioxan and N,Ndimethylbenzylamine were carried out in absolute Bu^tOH under an N₂ atmosphere and the oxidations of I⁻ in 95%

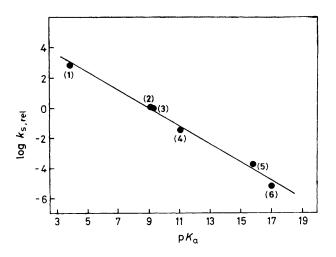
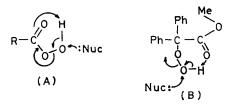



Figure 1. A plot of the log of the second-order rate constants [relative to the rate constant for (2)] for sulphoxidation of thioxan ($k_{s,rei}$) by the YOOH species v_s . the pK_a of YOH species. (Solvent abs. Bu OH for rate constants and H₂O for pK_a values, at 30 °C.)

EtOH (30 °C).⁵ All reactions were found to be first-order in substrate and hydroperoxide. Plots of the log of the secondorder rate constants for sulphoxidation of thioxan (k_s) vs. the log of the second-order rate constants for N-oxidation of N,N-dimethylbenzylamine and vs. the log of the second-order rate constants for I⁻ oxidation were linear with slopes of 1.0 and 1.1 respectively. These results establish that the free energies of activation for mono-oxygen donation, from the peroxycarboxylic acid and the hydroperoxides, are equally dependent on changes in the structures of YOOH with nucleophiles as divergent as the negatively charged, polarizable I-, the neutral, less polarizable, and non-basic dialkyl sulphide, and the neutral but basic tertiary amine.

The common mechanism, for the reactions under consideration, has been suggested to involve nucleophilic displacement upon the β -hydroperoxy-oxygen atom (equation 1).⁶ Figure 1 is a plot of the log of the relative [to (2)] second-order rate constant for the sulphoxidation of thioxan by the YOOH compounds vs. the pK_a values† of YOH. The slope of the correlation line in Figure 1 ($\beta_{1g} = -0.6$) relates to the fractional negative charge on the leaving α -oxygen of the YO moiety in the transition state (T.S.) and to the positive

character of the β -oxygen as a result of inductive polarization (*i.e.*, YO \leftarrow OH) in the ground state. The value of β_{nuc} for the N-oxidation of amines by (2) has been determined⁶ as +0.2which supports an early T.S. The position of the proton in the T.S. is not certain. For the sulphoxidation of thioxan in absolute dioxan by Bu^tOOH, the kinetic order in Bu^tOOH has been reported as two.7 In all the present studies in ButOH and EtOH solvents the kinetic orders in YOOH systems are one.^{5,6} Perhaps in the aprotic solvent, the second Bu^tOOH molecule acts as a proton transfer agent and this role is also played by Bu^tOH and EtOH solvents. It should be noted that the correlation of log k vs. pK_a of YOH shows that intramolecular proton transfer, possible for certain YOOH species (A and B),² does not provide a driving force for mono-oxygen transfer to S<, N \in or I⁻.

In conclusion: (i) the mechanism of oxygen transfer to :S < ,:N \leq , and I⁻ by YOOH is equally dependent upon the ability of YO⁻ to support a negative charge ($\beta_{1g} = -0.6$); (ii) peroxycarboxylic acids, organic hydroperoxides, and hydrogen peroxide compose a common series of YOOH oxygen donors, the advantage of peroxycarboxylic acid being the greater stability of YO⁻; and (iii) the great reactivity of the biologically important 4a-hydroperoxyflavins is due to the electronegativity of the 4a-position so that its derived YOH species possesses a pK_a of 9.1 to 9.5.

This work was supported by grants from the National Institutes of Health and the National Science Foundation.

Received, 30th September 1982; Com. 1155

References

- 1 K. B. Sharpless and T. R. Verhove, Aldrichimica Acta, 1979, 12 63
- 2 J. Rebek, Jr., Heterocycles, 1981, 15, 517.
- 3 T. C. Bruice in 'Flavins and Flavoproteins,' eds. V. Massey and C. H. Williams, Elsevier, North Holland, 1982, pp. 265 277.
- 4 For example see: A. L. Baumstark and D. R. Chrisope, Tetrahedron Lett., 1982, 22, 4591; R. D. Bach, M. W. Klein, R. A. Ryntz, and J. W. Holubka, J. Org. Chem., 1979, 44, 2569; R. P. Heggs and B. Ganem, J. Am. Chem. Soc., 1979, 101, 2484; J. P. Dulceu and J. Rodriguez, Tetrahedron Lett., 1982, **23**, 1887. 5 T. C. Bruice, J. B. Noar, S. S. Ball, and U. V. Venkataram,
- J. Am. Chem. Soc., in the press.
- 6 (a) S. S. Ball and T. C. Bruice, J. Am. Chem. Soc., 1980, 102, 6498; (b) *ibid.*, 1981, 103, 4580.
- 7 M. A. P. Dankleft, R. Cusci, J. O. Edwards, and H. Y. Pyun, J. Am. Chem. Soc., 1968, 90, 3209.
- 8 P. Ballinger and F. A. Long, J. Am. Chem. Soc., 1960, 82, 792.
- 9 M. Charton, J. Org. Chem., 1964, 29, 1222
- 10 T. C. Bruice, T. W. Chan, J. P. Taulane, I. Yokoe, D. L. Elliott, R. F. Williams, and M. Novak, J. Am. Chem. Soc., 1977, 99, 6713; M. Iwata, T. C. Bruice, H. L. Carrell, and J. P. Glusker, J. Am. Chem. Soc., 1980, 102, 5036.
- 11 J. Hine, 'Structural Effects on Equilibria in Organic Chemistry,' John Wiley and Sons, New York, 1975.

The pK_a values of YOH corresponding to the hydroperoxides YOOH were obtained as follows: values for m-ClC₆H₄COOH and H₂O were obtained from the literature, whilst those of Ph₂C(CN)-OH, Ph₂C(CO₂Me)OH, and Bu^tOH have been calculated employing the pK_a of MeOH (ref. 8), $\rho_{\rm T} = -8.2$, and $\sigma_{\rm T}$ values of +0.1 (Ph), +0.56 (CN), +0.34 (CO₂Me), and -0.05 (Me), (ref. 9). The pK_a of the alcohol (FIEt-4a-OH) corresponding to the 4ahydroperoxyflavin (2) cannot be determined by titration owing to its rearrangement (ref. 10). A reasonable model for FlEt-4a-OH is [Ph(Et)N](H_2 NCO)(HCONHCO)C-OH. The $\sigma_{\rm I}$ values employed which give a pK_a of 9.4 are 0.17 (PhNEt) (calc. from tabulation of ref. 11), 0.27 (CONH₂, ref. 9), and 0.31 (calc. from tabulation of ref. 9).